

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 643921.

TOOLS INTEGRATION

UnCoVerCPS toolchain

Goran Frehse, *UGA* Xavier Fornari, *ANSYS*

UnCoVerCPS Workshop – June 6th,2018

HORIZON 2020

CYBER-PHYSICAL SYSTEMS CHALLENGES

- Functionality and complexity are growing
- Mix of discrete and continuous dynamics (hard to control and verify)
- Unknown and changing environments
- Different tools with no interactions
- Difficulty to transfer results from on domain to the other

Source: CMU

Source: Rethink Robotics

CPS MODELLING

6/8/2018

HORIZON 2020

UNCOVERCPS TOOLCHAIN

- Formal specifications
- Modeling of networked CPS
- Reachability analysis
- Control design and implementation
- Conformance testing

Specifications

SPECIFICATIONS

- Problems are:
 - natural language: ambiguous, translation errors
 - specific: learning curve, not cross-stakeholders
- FormalSpec: Semi-automatic formalization of system requirements in English
- Methodology: Patterns regularly found in specifications
 - Reduce repeated translation
 - Reduce translation errors

Generate formal output

FORMALSPEC: STANDARD MONITOR AUTOMATA

after q, it is always After q, it is always the case that if p holds, the case that p holds then s holds after at most c time unit(s). before_activation before activation q. Q. loc1 loc1. t' == 1. urgent. ungent. D. 5 t := 0loc2 Įρ. t = 1t>T. error ernor

14 Standard hybrid automata represented in graphical and machine readable format.

System Modeling

A GENERAL MODEL FOR CPS

Model Properties:

- modular system structure with coupling through variables and communication
- hybrid system dynamics for the subsystem to account for different situations
- time-variance of constraints to model subsystem interaction
- continuous-time and discrete-time versions

SpaceEx:

- provide a common modeling frame
- ensure that the use cases can be
- connect the model format with the tools for control design
- use a model structure enabling decomposition and use of heterogeneous dynamics

Example of a networked, two ball model in SpaceEx

Powerful, near-universal language for continuous and discrete behaviors

Base components: hybrid automata (Alur et al. 1993)

- differential-algebraic equations
- enriched with nondeterminism
 - bounded disturbances
 - noise
 - underspecified behavior
- locations (modes)
- transitions between locations
 - instantaneous

6/8/2018

deterministic or not

SX MODELING LANGUAGE

• Network components

- connect base or network components
- signals = shared variables
- synchronization = shared events
- graphic representation
 - similar to StateCharts, Matlab Stateflow
- XML

MODEL IMPORT: SIMULINK-STATEFLOW

Translation tool SL2SX for subset of Matlab-Simulink and Stateflow (Minopoli et al., 2016)

Matlab-Simulink

MODEL IMPORT: SIMULINK-STATEFLOW

Translation tool SL2SX for subset of Matlab-Simulink and Stateflow (Minopoli et al., 2016)

USE CASES

Vehicle modeling for automated driving:

Robot modeling for human interaction:

Dynamics in both cases:

- nonlinear dynamics
- different modes
- state / input constraints

automatically possible

Simplified Models:

- sets of linearized dynamics
- adapt linearizations
- convexification of constraints
- communication of plans

10/06/2017

HORIZON 2020

cps-vo.org/group/UnCoVerCPS

HORIZON 2020

16

MOBILE ROBOTS IN THE PRESENCE OF HUMANS

- Mobile Robot shall move safely in presence of humans
 - Shared environment
 - Robot has a defined goal location
 - Consider walking humans with unknown goal locations
 - Move safely and efficiently
- Idea: Verify Passive Safety by Reachability Analysis
 - No collisions when robot is moving
 - Under realistic assumptions of pedestrian behavior

REACHABILITY ANALYSIS

- Implemented using CORA in MATLAB (online)
- Successfully checked conformance of pedestrian model against labeled video data
 - Only 16 errors in ~16.000 test cases (resulting from violated assumptions) for unbounded velocity
 - 71 errors for velocity bounded to
 2.0 m/s (several running persons)

Reachability Analysis - Verification

- **SpaceEx**: Verification for Piecewise Affine Dynamics
 - Univ. Grenoble Alpes (G. Frehse)
 - widely recognized as the most scalable tool (500 variables)
 - mature tool infrastructure (model editor, GUI, virtual machine)
 - model file format is quasi-standard, 3rd party conversion tools, to/from other tools
 - C++ / java
- **CORA**: Verification for Nonlinear Dynamics
 - TU Munich (M. Althoff)
 - tool with most case studies for nonlinear dynamics
 - sophisticated algorithms for uncertain parameters, switches, dynamics etc.
 - based on special geometric objects (zonotopes and extensions)
 - Matlab-toolbox

FORMAL VERIFICATION IN UNCOVERCPS

6/8/2018

cps-vo.org/group/UnCoVerCPS

- Simulation
 - single behavior

- Simulation
 - single behavior

- Simulation
 - single behavior

• Reachability

- cover of all behaviors

• Simulation

- deterministic

resolve nondet. using Monte Carlo etc.

scalable for nonlinear dyn.

• Reachability

– nondeterministic

continuous disturbances...

implementation tolerances...

- scalable for linear dynamics

- corner case simulation: check all extreme points
 - n variables, T time steps
 - initial set given by intervals = 2^{n} vertices
 - inputs given by intervals = 2^{n} vertices

- corner case simulation: check all extreme points
 - n variables, T time steps
 - initial set given by intervals = 2^{n} vertices
 - inputs given by intervals = 2^{n} vertices $2^{n}(2^{n})^{T}$ trajectories
- template reachability (interval enclosure):

EXAMPLE: INTERNATIONAL SPACE STATION

flexible body dynamics of Russian module of ISS¹ 270 variables, 3 nondet. inputs

<**1h** for reach set up to T = 20

¹ Y. Chahlaoui and P. Van Dooren, "Benchmark examples for model reduction of linear time-invariant dynamical systems," in *Dimension Reduction of Large-Scale Systems*, Springer, 2005, pp. 379–392.

Implementation

30

CONTROL DESIGN & IMPLEMENTATION

- The process has the following steps:
 - Specifications
 - Analyses of interactions of an abstract controller with the environment
 - Refinement of the controller and its environment for simulation
 - Final design of the controller and automatic certified code generation

HORIZON 2020

MODEL ABSTRACTIONS FOR CONTROL

After t>=0, it is always the case that once x>=0.5 becomes satisfied it holds for less than 0.5 time units. · Globally, it is always the Semi-formal specifications case that y<ymax holds. Hybrid High-level controller for specification verifications automata Refined deterministic model with Scade discrete controller and continuous Hybrid environment Controller discrete specification for **Scade** coding

Code

SCADE HYBRID

- SCADE tool:
 - an industrial environment dedicated to high-integrity applications development
 - used in various domains: A&D, automotive, rail transport, industry, ...
 - Industrial Simulink Stafeflow import : from control-laws studies to safe implementation
- Scade language describes discrete-time algorithms
 - Control-oriented input formalism
 - Certified code generation: ISO 26262, DO-178C, EN 50128, ...

cps-vo.org/group/UnCoVerCPS

SCADE HYBRID

• Scade Hybrid is an extension of the Scade language

- Notion of derivation equation: der u = expr
- Zero-crossing events
- Well-defined semantics

Closed-loop simulation

- Description of physics ;
- Improving understanding of discrete/continuous interactions;
- Solver-independent code generation integrating:
 - Code from discrete controller
 - Code related to continuous behavior

Conclusion

EXAMPLE: VEHICLE MODEL

Abstraction and refinement e.g. trajectory uncertainty due to steering uncertainty or road conditions

- The UnCoVerCPS toolchain brings new capabilities for CPS design
- Systems can be specified using semi-automatic formalization of requirements
- Conformance Testing validates the environment models
- Network of CPS can be modelized, analyzed and refined
- Reachability analyses can be performed to determined proper trajectories
- Safe controllers can be derived and implemented using certified code generation.

