FUTURE CHALLENGES FOR CPS THEORY: AUTOMOTIVE SYSTEMS

JENS OEHLERKING, ROBERT BOSCH GMBH

Parkhaus

Future challenges for CPS Theory: Automotive Systems Bosch Key figures 2016*

Bosch Group	 73.1 billion euros in sales 389,281 associates
 Mobility Solutions One of the world's largest suppliers of mobility solutions 	60% share of sales
 Industrial Technology Leading in drive and control technology, packaging, and process technology 	
 Energy and Building Technology One of the leading manufacturers of security and communication technology Leading manufacturer of energy-efficient heating products and hot-water solutions 	- 40% share of sales
 Consumer Goods Leading supplier of power tools and accessories Leading supplier of household appliances 	

C/CCB, C/CCD | 2018-03-22

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Future challenges for CPS Theory: Automotive Systems Sketch of a Possible HAD Architecture

Requires a formal framework beyond classical hybrid systems!

Future challenges for CPS Theory: Automotive Systems Challenges in Automated Driving Verification

What is new?

- Sensor uncertainties difficult to quantify
- Perception: data-based models (deep neural networks)
- Complexity of physical environment
- Interaction between multiple agents
- Communication in a safety critical context

Q: How many miles driven are required to demonstrate for a given automated driving system with 95% confidence that they cause 20% less fatalities than human drivers?
A: 8.8 billion miles [Kalra and Paddock: "Driving to Safety". RAND Corporation, 2016]

Intractable without some form of formal methods!

Future challenges for CPS Theory: Automotive Systems Modeling

BOSCH

- interacting agents
- ML-based perception
- models of complex sensors
- geometric structure of the environment

CR/AEE4 | 2018-03-22

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property righ

Future challenges for CPS Theory: Automotive Systems Specification

- formalized traffic rules
- explicit and implicit contracts between traffic participants
- assumptions on human behavior
- societally acceptable risk

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Future challenges for CPS Theory: Automotive Systems Occupancy Prediction for Mobile Robots

TABLE II: Results from ROS Simulation (Lightly Populated Scenarios)

	Flow				Cross-flow				Anti-flow			
Approach	@Goal	Time(s)	Len(m)	Vel(m/s)	@Goal	Time(s)	Len(m)	Vel(m/s)	@Goal	Time(s)	Len(m)	Vel(m/s)
Braking ICS	10	34.3	22.9	0.73	10	40.0	23	0.63	10	116.1	23.0	0.21
Safety Field	10	37.9	22.9	0.64	10	35.7	23	0.68	10	74.8	22.9	0.32
Onl. Verif.	10	22.4	22.9	1.04	10	26.3	23.2	0.91	10	52.3	23.0	0.45

TABLE III: Results from ROS Simulation (Densely Populated Scenarios)

	Flow				Cross-flow				Anti-flow			
Approach	@Goal	Time(s)	Len(m)	Vel(m/s)	@Goal	Time(s)	Len(m)	Vel(m/s)	@Goal	Time(s)	Len(m)	Vel(m/s)
Braking ICS	10	108.0	22.9	0.25	10	114.2	23.1	0.21	10	519.5	23.2	0.05
Safety Field	10	96.0	22.9	0.27	10	76.9	23	0.31	10	251.5	23.0	0.10
Onl. Verif.	10	26.0	23	0.92	10	37.8	23.1	0.65	10	159.2	23.2	0.15

► Implemented using CORA in MATLAB (online)

- Successfully checked conformance of pedestrian model against labeled video data
 - Only 16 errors in ~16.000 test cases (resulting from violated assumptions) for unbounded velocity
 - ► 71 errors for velocity bounded to 2.0 m/s (several running persons)

Future challenges for CPS Theory: Automotive Systems Conformance & Monitoring

Classical hybrid systems verification:

Given a model of the "cyber" and the "physical" component, prove that some property holds on the composed system!

In safety critical contexts, trustworthiness of models is key!

This requires:

- Formalizable arguments about the quality of physical models
- Explicit assumptions on why a set of measurements for model validation/parameter identification was sufficient

\rightarrow conformance notions, falsification, coverage metrics, online monitoring

0.5

240

Future challenges for CPS Theory: Automotive Systems Open questions

- How do we go beyond established modeling paradigms to enable the creation of the complex models that are needed?
- ► How do we argue the quality of models used in safety critical contexts?
- ► What formal arguments can be made about data-based software (e.g., neural networks)?
- How de we formalize the expected behavior of individual agents, so that their composition is (sufficiently) safe?
- ► What should be considered "sufficiently safe"?

